Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract Agroecosystems, which include row crops, pasture, and grass and shrub grazing lands, are sensitive to changes in management, weather, and genetics. To better understand how these systems are responding to changes, we need to improve monitoring and modeling carbon and water dynamics. Vegetation Indices (VIs) are commonly used to estimate gross primary productivity (GPP) and evapotranspiration (ET), but these empirical relationships are often location and crop specific. There is a need to evaluate if VIs can be effective and, more general, predictors of ecosystem processes through time and across different agroecosystems. Near‐surface photographic (red‐green‐blue) images from PhenoCam can be used to calculate the VI green chromatic coordinate (GCC) and offer a pathway to improve understanding of field‐scale relationships between VIs and GPP and ET. We synthesized observations spanning 76 site‐years across 15 agroecosystem sites with PhenoCam GCCand GPP or ET estimates from eddy covariance (EC) to quantify interannual variability (IAV) in the relationship between GPP and ET and GCCacross. We uncovered a high degree of variability in the strength and slopes of the GCC∼ GPP and ET relationships (R2 = 0.1 ‐ 0.9) within and across production systems. Overall, GCCis a better predictor of GPP than ET (R2 = 0.64 and 0.54, respectively), performing best in croplands (R2 = 0.91). Shrub‐dominated systems exhibit the lowest predictive power of GCCfor GPP and ET but have less IAV in slope. We propose that PhenoCam estimates of GCCcould provide an alternative approach for predictions of ecosystem processes.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Soil moisture is an important driver of growth in boreal Alaska, but estimating soil hydraulic parameters can be challenging in this data‐sparse region. Parameter estimation is further complicated in regions with rapidly warming climate, where there is a need to minimize model error dependence on interannual climate variations. To better identify soil hydraulic parameters and quantify energy and water balance and soil moisture dynamics, we applied the physically based, one‐dimensional ecohydrological Simultaneous Heat and Water (SHAW) model, loosely coupled with the Geophysical Institute of Permafrost Laboratory (GIPL) model, to an upland deciduous forest stand in interior Alaska over a 13‐year period. Using a Generalized Likelihood Uncertainty Estimation parameterisation, SHAW reproduced interannual and vertical spatial variability of soil moisture during a five‐year validation period quite well, with root mean squared error (RMSE) of volumetric water content at 0.5 m as low as 0.020 cm3/cm3. Many parameter sets reproduced reasonable soil moisture dynamics, suggesting considerable equifinality. Model performance generally declined in the eight‐year validation period, indicating some overfitting and demonstrating the importance of interannual variability in model evaluation. We compared the performance of parameter sets selected based on traditional performance measures such as the RMSE that minimize error in soil moisture simulation, with one that is designed to minimize the dependence of model error on interannual climate variability using a new diagnostic approach we call CSMP, which stands for Climate Sensitivity of Model Performance. Use of the CSMP approach moderately decreases traditional model performance but may be more suitable for climate change applications, for which it is important that model error is independent from climate variability. These findings illustrate (1) that the SHAW model, coupled with GIPL, can adequately simulate soil moisture dynamics in this boreal deciduous region, (2) the importance of interannual variability in model parameterisation, and (3) a novel objective function for parameter selection to improve applicability in non‐stationary climates.more » « less
-
Abstract Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics as well as limited data availability. We developed the Rangeland Carbon Tracking and Management (RCTM) system to track long‐term changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental variable data sets with algorithms representing terrestrial C‐cycle processes. Bayesian calibration was conducted using quality‐controlled C flux data sets obtained from 61 Ameriflux and NEON flux tower sites from Western and Midwestern US rangelands to parameterize the model according to dominant vegetation classes (perennial and/or annual grass, grass‐shrub mixture, and grass‐tree mixture). The resulting RCTM system produced higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (R2 > 0.6, RMSE <390 g C m−2) relative to net ecosystem exchange of CO2(NEE) (R2 > 0.4, RMSE <180 g C m−2). Model performance in estimating rangeland C fluxes varied by season and vegetation type. The RCTM captured the spatial variability of SOC stocks withR2 = 0.6 when validated against SOC measurements across 13 NEON sites. Model simulations indicated slightly enhanced SOC stocks for the flux tower sites during the past decade, which is mainly driven by an increase in precipitation. Future efforts to refine the RCTM system will benefit from long‐term network‐based monitoring of vegetation biomass, C fluxes, and SOC stocks.more » « lessFree, publicly-accessible full text available March 15, 2026
An official website of the United States government
